3.2.89 \(\int \frac {1}{(a-b x^4)^{3/2} (c-d x^4)^2} \, dx\) [189]

3.2.89.1 Optimal result
3.2.89.2 Mathematica [C] (warning: unable to verify)
3.2.89.3 Rubi [A] (verified)
3.2.89.4 Maple [C] (verified)
3.2.89.5 Fricas [F(-1)]
3.2.89.6 Sympy [F(-1)]
3.2.89.7 Maxima [F]
3.2.89.8 Giac [F]
3.2.89.9 Mupad [F(-1)]

3.2.89.1 Optimal result

Integrand size = 23, antiderivative size = 362 \[ \int \frac {1}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )^2} \, dx=\frac {b (2 b c+a d) x}{4 a c (b c-a d)^2 \sqrt {a-b x^4}}-\frac {d x}{4 c (b c-a d) \sqrt {a-b x^4} \left (c-d x^4\right )}+\frac {b^{3/4} (2 b c+a d) \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{4 a^{3/4} c (b c-a d)^2 \sqrt {a-b x^4}}-\frac {3 \sqrt [4]{a} d (3 b c-a d) \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticPi}\left (-\frac {\sqrt {a} \sqrt {d}}{\sqrt {b} \sqrt {c}},\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{8 \sqrt [4]{b} c^2 (b c-a d)^2 \sqrt {a-b x^4}}-\frac {3 \sqrt [4]{a} d (3 b c-a d) \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticPi}\left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {b} \sqrt {c}},\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{8 \sqrt [4]{b} c^2 (b c-a d)^2 \sqrt {a-b x^4}} \]

output
1/4*b*(a*d+2*b*c)*x/a/c/(-a*d+b*c)^2/(-b*x^4+a)^(1/2)-1/4*d*x/c/(-a*d+b*c) 
/(-d*x^4+c)/(-b*x^4+a)^(1/2)+1/4*b^(3/4)*(a*d+2*b*c)*EllipticF(b^(1/4)*x/a 
^(1/4),I)*(1-b*x^4/a)^(1/2)/a^(3/4)/c/(-a*d+b*c)^2/(-b*x^4+a)^(1/2)-3/8*a^ 
(1/4)*d*(-a*d+3*b*c)*EllipticPi(b^(1/4)*x/a^(1/4),-a^(1/2)*d^(1/2)/b^(1/2) 
/c^(1/2),I)*(1-b*x^4/a)^(1/2)/b^(1/4)/c^2/(-a*d+b*c)^2/(-b*x^4+a)^(1/2)-3/ 
8*a^(1/4)*d*(-a*d+3*b*c)*EllipticPi(b^(1/4)*x/a^(1/4),a^(1/2)*d^(1/2)/b^(1 
/2)/c^(1/2),I)*(1-b*x^4/a)^(1/2)/b^(1/4)/c^2/(-a*d+b*c)^2/(-b*x^4+a)^(1/2)
 
3.2.89.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.52 (sec) , antiderivative size = 374, normalized size of antiderivative = 1.03 \[ \int \frac {1}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )^2} \, dx=\frac {x \left (-b d (2 b c+a d) x^4 \sqrt {1-\frac {b x^4}{a}} \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},1,\frac {9}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )+\frac {c \left (25 a c \left (4 a^2 d^2+2 b^2 c \left (2 c-d x^4\right )-a b d \left (8 c+d x^4\right )\right ) \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )-10 x^4 \left (-a^2 d^2+a b d^2 x^4-2 b^2 c \left (c-d x^4\right )\right ) \left (2 a d \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},2,\frac {9}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )+b c \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{2},1,\frac {9}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )\right )\right )}{\left (c-d x^4\right ) \left (5 a c \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )+2 x^4 \left (2 a d \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},2,\frac {9}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )+b c \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{2},1,\frac {9}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )\right )\right )}\right )}{20 a c^2 (b c-a d)^2 \sqrt {a-b x^4}} \]

input
Integrate[1/((a - b*x^4)^(3/2)*(c - d*x^4)^2),x]
 
output
(x*(-(b*d*(2*b*c + a*d)*x^4*Sqrt[1 - (b*x^4)/a]*AppellF1[5/4, 1/2, 1, 9/4, 
 (b*x^4)/a, (d*x^4)/c]) + (c*(25*a*c*(4*a^2*d^2 + 2*b^2*c*(2*c - d*x^4) - 
a*b*d*(8*c + d*x^4))*AppellF1[1/4, 1/2, 1, 5/4, (b*x^4)/a, (d*x^4)/c] - 10 
*x^4*(-(a^2*d^2) + a*b*d^2*x^4 - 2*b^2*c*(c - d*x^4))*(2*a*d*AppellF1[5/4, 
 1/2, 2, 9/4, (b*x^4)/a, (d*x^4)/c] + b*c*AppellF1[5/4, 3/2, 1, 9/4, (b*x^ 
4)/a, (d*x^4)/c])))/((c - d*x^4)*(5*a*c*AppellF1[1/4, 1/2, 1, 5/4, (b*x^4) 
/a, (d*x^4)/c] + 2*x^4*(2*a*d*AppellF1[5/4, 1/2, 2, 9/4, (b*x^4)/a, (d*x^4 
)/c] + b*c*AppellF1[5/4, 3/2, 1, 9/4, (b*x^4)/a, (d*x^4)/c])))))/(20*a*c^2 
*(b*c - a*d)^2*Sqrt[a - b*x^4])
 
3.2.89.3 Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 347, normalized size of antiderivative = 0.96, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {931, 25, 1024, 27, 1021, 765, 762, 925, 27, 1543, 1542}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )^2} \, dx\)

\(\Big \downarrow \) 931

\(\displaystyle -\frac {\int -\frac {5 b d x^4+4 b c-3 a d}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )}dx}{4 c (b c-a d)}-\frac {d x}{4 c \sqrt {a-b x^4} \left (c-d x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {5 b d x^4+4 b c-3 a d}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )}dx}{4 c (b c-a d)}-\frac {d x}{4 c \sqrt {a-b x^4} \left (c-d x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 1024

\(\displaystyle \frac {\frac {\int \frac {2 \left (-b d (2 b c+a d) x^4+2 b^2 c^2+3 a^2 d^2-8 a b c d\right )}{\sqrt {a-b x^4} \left (c-d x^4\right )}dx}{2 a (b c-a d)}+\frac {b x (a d+2 b c)}{a \sqrt {a-b x^4} (b c-a d)}}{4 c (b c-a d)}-\frac {d x}{4 c \sqrt {a-b x^4} \left (c-d x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {-b d (2 b c+a d) x^4+2 b^2 c^2+3 a^2 d^2-8 a b c d}{\sqrt {a-b x^4} \left (c-d x^4\right )}dx}{a (b c-a d)}+\frac {b x (a d+2 b c)}{a \sqrt {a-b x^4} (b c-a d)}}{4 c (b c-a d)}-\frac {d x}{4 c \sqrt {a-b x^4} \left (c-d x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 1021

\(\displaystyle \frac {\frac {b (a d+2 b c) \int \frac {1}{\sqrt {a-b x^4}}dx-3 a d (3 b c-a d) \int \frac {1}{\sqrt {a-b x^4} \left (c-d x^4\right )}dx}{a (b c-a d)}+\frac {b x (a d+2 b c)}{a \sqrt {a-b x^4} (b c-a d)}}{4 c (b c-a d)}-\frac {d x}{4 c \sqrt {a-b x^4} \left (c-d x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 765

\(\displaystyle \frac {\frac {\frac {b \sqrt {1-\frac {b x^4}{a}} (a d+2 b c) \int \frac {1}{\sqrt {1-\frac {b x^4}{a}}}dx}{\sqrt {a-b x^4}}-3 a d (3 b c-a d) \int \frac {1}{\sqrt {a-b x^4} \left (c-d x^4\right )}dx}{a (b c-a d)}+\frac {b x (a d+2 b c)}{a \sqrt {a-b x^4} (b c-a d)}}{4 c (b c-a d)}-\frac {d x}{4 c \sqrt {a-b x^4} \left (c-d x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 762

\(\displaystyle \frac {\frac {\frac {\sqrt [4]{a} b^{3/4} \sqrt {1-\frac {b x^4}{a}} (a d+2 b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt {a-b x^4}}-3 a d (3 b c-a d) \int \frac {1}{\sqrt {a-b x^4} \left (c-d x^4\right )}dx}{a (b c-a d)}+\frac {b x (a d+2 b c)}{a \sqrt {a-b x^4} (b c-a d)}}{4 c (b c-a d)}-\frac {d x}{4 c \sqrt {a-b x^4} \left (c-d x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 925

\(\displaystyle \frac {\frac {\frac {\sqrt [4]{a} b^{3/4} \sqrt {1-\frac {b x^4}{a}} (a d+2 b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt {a-b x^4}}-3 a d (3 b c-a d) \left (\frac {\int \frac {\sqrt {c}}{\left (\sqrt {c}-\sqrt {d} x^2\right ) \sqrt {a-b x^4}}dx}{2 c}+\frac {\int \frac {\sqrt {c}}{\left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {a-b x^4}}dx}{2 c}\right )}{a (b c-a d)}+\frac {b x (a d+2 b c)}{a \sqrt {a-b x^4} (b c-a d)}}{4 c (b c-a d)}-\frac {d x}{4 c \sqrt {a-b x^4} \left (c-d x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {\sqrt [4]{a} b^{3/4} \sqrt {1-\frac {b x^4}{a}} (a d+2 b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt {a-b x^4}}-3 a d (3 b c-a d) \left (\frac {\int \frac {1}{\left (\sqrt {c}-\sqrt {d} x^2\right ) \sqrt {a-b x^4}}dx}{2 \sqrt {c}}+\frac {\int \frac {1}{\left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {a-b x^4}}dx}{2 \sqrt {c}}\right )}{a (b c-a d)}+\frac {b x (a d+2 b c)}{a \sqrt {a-b x^4} (b c-a d)}}{4 c (b c-a d)}-\frac {d x}{4 c \sqrt {a-b x^4} \left (c-d x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 1543

\(\displaystyle \frac {\frac {\frac {\sqrt [4]{a} b^{3/4} \sqrt {1-\frac {b x^4}{a}} (a d+2 b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt {a-b x^4}}-3 a d (3 b c-a d) \left (\frac {\sqrt {1-\frac {b x^4}{a}} \int \frac {1}{\left (\sqrt {c}-\sqrt {d} x^2\right ) \sqrt {1-\frac {b x^4}{a}}}dx}{2 \sqrt {c} \sqrt {a-b x^4}}+\frac {\sqrt {1-\frac {b x^4}{a}} \int \frac {1}{\left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {1-\frac {b x^4}{a}}}dx}{2 \sqrt {c} \sqrt {a-b x^4}}\right )}{a (b c-a d)}+\frac {b x (a d+2 b c)}{a \sqrt {a-b x^4} (b c-a d)}}{4 c (b c-a d)}-\frac {d x}{4 c \sqrt {a-b x^4} \left (c-d x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 1542

\(\displaystyle \frac {\frac {\frac {\sqrt [4]{a} b^{3/4} \sqrt {1-\frac {b x^4}{a}} (a d+2 b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt {a-b x^4}}-3 a d (3 b c-a d) \left (\frac {\sqrt [4]{a} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticPi}\left (-\frac {\sqrt {a} \sqrt {d}}{\sqrt {b} \sqrt {c}},\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{2 \sqrt [4]{b} c \sqrt {a-b x^4}}+\frac {\sqrt [4]{a} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticPi}\left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {b} \sqrt {c}},\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{2 \sqrt [4]{b} c \sqrt {a-b x^4}}\right )}{a (b c-a d)}+\frac {b x (a d+2 b c)}{a \sqrt {a-b x^4} (b c-a d)}}{4 c (b c-a d)}-\frac {d x}{4 c \sqrt {a-b x^4} \left (c-d x^4\right ) (b c-a d)}\)

input
Int[1/((a - b*x^4)^(3/2)*(c - d*x^4)^2),x]
 
output
-1/4*(d*x)/(c*(b*c - a*d)*Sqrt[a - b*x^4]*(c - d*x^4)) + ((b*(2*b*c + a*d) 
*x)/(a*(b*c - a*d)*Sqrt[a - b*x^4]) + ((a^(1/4)*b^(3/4)*(2*b*c + a*d)*Sqrt 
[1 - (b*x^4)/a]*EllipticF[ArcSin[(b^(1/4)*x)/a^(1/4)], -1])/Sqrt[a - b*x^4 
] - 3*a*d*(3*b*c - a*d)*((a^(1/4)*Sqrt[1 - (b*x^4)/a]*EllipticPi[-((Sqrt[a 
]*Sqrt[d])/(Sqrt[b]*Sqrt[c])), ArcSin[(b^(1/4)*x)/a^(1/4)], -1])/(2*b^(1/4 
)*c*Sqrt[a - b*x^4]) + (a^(1/4)*Sqrt[1 - (b*x^4)/a]*EllipticPi[(Sqrt[a]*Sq 
rt[d])/(Sqrt[b]*Sqrt[c]), ArcSin[(b^(1/4)*x)/a^(1/4)], -1])/(2*b^(1/4)*c*S 
qrt[a - b*x^4])))/(a*(b*c - a*d)))/(4*c*(b*c - a*d))
 

3.2.89.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 762
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[(1/(Sqrt[a]*Rt[-b/a, 4]) 
)*EllipticF[ArcSin[Rt[-b/a, 4]*x], -1], x] /; FreeQ[{a, b}, x] && NegQ[b/a] 
 && GtQ[a, 0]
 

rule 765
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[Sqrt[1 + b*(x^4/a)]/Sqrt 
[a + b*x^4]   Int[1/Sqrt[1 + b*(x^4/a)], x], x] /; FreeQ[{a, b}, x] && NegQ 
[b/a] &&  !GtQ[a, 0]
 

rule 925
Int[1/(Sqrt[(a_) + (b_.)*(x_)^4]*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Simp[ 
1/(2*c)   Int[1/(Sqrt[a + b*x^4]*(1 - Rt[-d/c, 2]*x^2)), x], x] + Simp[1/(2 
*c)   Int[1/(Sqrt[a + b*x^4]*(1 + Rt[-d/c, 2]*x^2)), x], x] /; FreeQ[{a, b, 
 c, d}, x] && NeQ[b*c - a*d, 0]
 

rule 931
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Simp[(-b)*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - 
 a*d))), x] + Simp[1/(a*n*(p + 1)*(b*c - a*d))   Int[(a + b*x^n)^(p + 1)*(c 
 + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, 
 x], x], x] /; FreeQ[{a, b, c, d, n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, 
-1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomialQ[a, b, 
 c, d, n, p, q, x]
 

rule 1021
Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x 
_)^(n_)]), x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^n], x], x] + Simp[(b* 
e - a*f)/b   Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b, c, 
 d, e, f, n}, x]
 

rule 1024
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f 
_.)*(x_)^(n_)), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^n)^(p + 1)*((c 
+ d*x^n)^(q + 1)/(a*n*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*n*(b*c - a*d)*( 
p + 1))   Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b 
*c - a*d)*(p + 1) + d*(b*e - a*f)*(n*(p + q + 2) + 1)*x^n, x], x], x] /; Fr 
eeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]
 

rule 1542
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[ 
{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x 
], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]
 

rule 1543
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[ 
Sqrt[1 + c*(x^4/a)]/Sqrt[a + c*x^4]   Int[1/((d + e*x^2)*Sqrt[1 + c*(x^4/a) 
]), x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] &&  !GtQ[a, 0]
 
3.2.89.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 4.75 (sec) , antiderivative size = 374, normalized size of antiderivative = 1.03

method result size
default \(\frac {d^{2} x \sqrt {-b \,x^{4}+a}}{4 c \left (a d -b c \right )^{2} \left (-d \,x^{4}+c \right )}+\frac {b^{2} x}{2 a \left (a d -b c \right )^{2} \sqrt {-\left (x^{4}-\frac {a}{b}\right ) b}}+\frac {\left (\frac {b d}{4 \left (a d -b c \right )^{2} c}+\frac {b^{2}}{2 a \left (a d -b c \right )^{2}}\right ) \sqrt {1-\frac {x^{2} \sqrt {b}}{\sqrt {a}}}\, \sqrt {1+\frac {x^{2} \sqrt {b}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, \sqrt {-b \,x^{4}+a}}-\frac {3 \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (d \,\textit {\_Z}^{4}-c \right )}{\sum }\frac {\left (a d -3 b c \right ) \left (-\frac {\operatorname {arctanh}\left (\frac {-2 b \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 a}{2 \sqrt {\frac {a d -b c}{d}}\, \sqrt {-b \,x^{4}+a}}\right )}{\sqrt {\frac {a d -b c}{d}}}-\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} d \sqrt {1-\frac {x^{2} \sqrt {b}}{\sqrt {a}}}\, \sqrt {1+\frac {x^{2} \sqrt {b}}{\sqrt {a}}}\, \Pi \left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, \frac {\sqrt {a}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d}{\sqrt {b}\, c}, \frac {\sqrt {-\frac {\sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, c \sqrt {-b \,x^{4}+a}}\right )}{\left (a d -b c \right )^{2} \underline {\hspace {1.25 ex}}\alpha ^{3}}\right )}{32 c}\) \(374\)
elliptic \(\frac {d^{2} x \sqrt {-b \,x^{4}+a}}{4 c \left (a d -b c \right )^{2} \left (-d \,x^{4}+c \right )}+\frac {b^{2} x}{2 a \left (a d -b c \right )^{2} \sqrt {-\left (x^{4}-\frac {a}{b}\right ) b}}+\frac {\left (\frac {b d}{4 \left (a d -b c \right )^{2} c}+\frac {b^{2}}{2 a \left (a d -b c \right )^{2}}\right ) \sqrt {1-\frac {x^{2} \sqrt {b}}{\sqrt {a}}}\, \sqrt {1+\frac {x^{2} \sqrt {b}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, \sqrt {-b \,x^{4}+a}}-\frac {3 \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (d \,\textit {\_Z}^{4}-c \right )}{\sum }\frac {\left (a d -3 b c \right ) \left (-\frac {\operatorname {arctanh}\left (\frac {-2 b \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 a}{2 \sqrt {\frac {a d -b c}{d}}\, \sqrt {-b \,x^{4}+a}}\right )}{\sqrt {\frac {a d -b c}{d}}}-\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} d \sqrt {1-\frac {x^{2} \sqrt {b}}{\sqrt {a}}}\, \sqrt {1+\frac {x^{2} \sqrt {b}}{\sqrt {a}}}\, \Pi \left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, \frac {\sqrt {a}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d}{\sqrt {b}\, c}, \frac {\sqrt {-\frac {\sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, c \sqrt {-b \,x^{4}+a}}\right )}{\left (a d -b c \right )^{2} \underline {\hspace {1.25 ex}}\alpha ^{3}}\right )}{32 c}\) \(374\)

input
int(1/(-b*x^4+a)^(3/2)/(-d*x^4+c)^2,x,method=_RETURNVERBOSE)
 
output
1/4*d^2/c/(a*d-b*c)^2*x*(-b*x^4+a)^(1/2)/(-d*x^4+c)+1/2*b^2*x/a/(a*d-b*c)^ 
2/(-(x^4-a/b)*b)^(1/2)+(1/4*b*d/(a*d-b*c)^2/c+1/2*b^2/a/(a*d-b*c)^2)/(1/a^ 
(1/2)*b^(1/2))^(1/2)*(1-x^2*b^(1/2)/a^(1/2))^(1/2)*(1+x^2*b^(1/2)/a^(1/2)) 
^(1/2)/(-b*x^4+a)^(1/2)*EllipticF(x*(1/a^(1/2)*b^(1/2))^(1/2),I)-3/32/c*su 
m((a*d-3*b*c)/(a*d-b*c)^2/_alpha^3*(-1/(1/d*(a*d-b*c))^(1/2)*arctanh(1/2*( 
-2*_alpha^2*b*x^2+2*a)/(1/d*(a*d-b*c))^(1/2)/(-b*x^4+a)^(1/2))-2/(1/a^(1/2 
)*b^(1/2))^(1/2)*_alpha^3*d/c*(1-x^2*b^(1/2)/a^(1/2))^(1/2)*(1+x^2*b^(1/2) 
/a^(1/2))^(1/2)/(-b*x^4+a)^(1/2)*EllipticPi(x*(1/a^(1/2)*b^(1/2))^(1/2),a^ 
(1/2)/b^(1/2)*_alpha^2/c*d,(-1/a^(1/2)*b^(1/2))^(1/2)/(1/a^(1/2)*b^(1/2))^ 
(1/2))),_alpha=RootOf(_Z^4*d-c))
 
3.2.89.5 Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )^2} \, dx=\text {Timed out} \]

input
integrate(1/(-b*x^4+a)^(3/2)/(-d*x^4+c)^2,x, algorithm="fricas")
 
output
Timed out
 
3.2.89.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )^2} \, dx=\text {Timed out} \]

input
integrate(1/(-b*x**4+a)**(3/2)/(-d*x**4+c)**2,x)
 
output
Timed out
 
3.2.89.7 Maxima [F]

\[ \int \frac {1}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )^2} \, dx=\int { \frac {1}{{\left (-b x^{4} + a\right )}^{\frac {3}{2}} {\left (d x^{4} - c\right )}^{2}} \,d x } \]

input
integrate(1/(-b*x^4+a)^(3/2)/(-d*x^4+c)^2,x, algorithm="maxima")
 
output
integrate(1/((-b*x^4 + a)^(3/2)*(d*x^4 - c)^2), x)
 
3.2.89.8 Giac [F]

\[ \int \frac {1}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )^2} \, dx=\int { \frac {1}{{\left (-b x^{4} + a\right )}^{\frac {3}{2}} {\left (d x^{4} - c\right )}^{2}} \,d x } \]

input
integrate(1/(-b*x^4+a)^(3/2)/(-d*x^4+c)^2,x, algorithm="giac")
 
output
integrate(1/((-b*x^4 + a)^(3/2)*(d*x^4 - c)^2), x)
 
3.2.89.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )^2} \, dx=\int \frac {1}{{\left (a-b\,x^4\right )}^{3/2}\,{\left (c-d\,x^4\right )}^2} \,d x \]

input
int(1/((a - b*x^4)^(3/2)*(c - d*x^4)^2),x)
 
output
int(1/((a - b*x^4)^(3/2)*(c - d*x^4)^2), x)